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Abstract. The enhancement of the electron-lattice interaction due to lattice anharmonicity 
is considered. When the lattice is anomalously soft the electron-lattice interaction generates 
a polaron state and bipolaron states of intermediate radius which are absent in the harmonic 
case. The Bose condensation of the bipolarons may give a mechanism of superconductivity. 

The problem of the microscopic mechanism of high- T, superconductivity is rather 
challenging. The principal question here concerns the relation between this phenomenon 
and the electron-lattice interaction. If this interaction plays a decisive role (there is some 
experimental evidence in favour of this assumption-see, e.g., Kim eta1 (1987), Herr et 
a1 (1987), Graves and Johnston (1988), Boolchand et a1 (1988), Yuen et a1 (1988), Xu et 
af (1988)), then one should consider another, then well established, Cooper’s mechanism 
of electron pairing-this is shown unambiguously by a very small isotope effect. The 
new idea here is connected with the anharmonic character of these crystalline materials 
related to a mechanical instability. Phillips (1987a, b) argued that reconstruction and/ 
or slow relaxation of the lattices take place in this case (an experimental study of the 
mechanical properties of the materials was reported by Shen Huimin et af (1987) and 
Bhattacharya et af (1988)), and that therefore the harmonic description of the lattice 
deformation fails. The calculations of Kress et af (1988) also show that the lattice of 
YBa2Cu30, is close to instability. The possible role of anharmonicity of the lattice 
deformation in the mechanism of enhancement of the electron-lattice interaction was 
put forward by Zacher (1987), but he did not give any formulae. It is useful to mention 
here the experimental studies which show essential anharmonicity of the lattice 
vibration: Marsh et a1 (1988), Caponi et a1 (1987), Zhu Jingsheng et a1 (1988). The 
anharmonicity is included indirectly in the theory of Shi-jee Xiong (1988a, b), who 
considered the Jahn-Teller transition of oxygen atoms from position O( 1) into position 
O(5) (YBa2Cu3O7) as a mechanism of electron-lattice interaction. This approach 
resembles the theory of A15 superconductors proposed by Yu and Anderson (1984). 
Anharmonicity was also considered by Chaturverdi et a1 (1988), who put forward the 
Goldstone-type Hamiltonian which we also consider in this paper. 

The key problem of the theory of anharmonic enhancement of the electron-lattice 
interaction is the search for the principal difference between the harmonic and anhar- 
monic cases. This problem has not been discussed previously. We show here that in the 
anharmonic case there are singlet bipolaron states of intermediate radius whereas in the 
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harmonic case even polaron states of this type are lacking. We stress that these bipolarons 
are essentially different from the well known negative-U centres proposed by Anderson 
(1975) for the harmonic case. It should be noted that the Anderson bipolarons and the 
Chakraverty bipolarons widely used in superconductivity theory (see, e.g., Alexandrov 
er a1 1986, Alexandrov 1988. Chakraverty et a1 1987,1988, Wilson 1988) and the results 
obtained give hope of success. The transition from this type of polaron to ours was 
discussed in relation to the dependence on the space dimensionality by Emin and 
Holstein (1976) and Emin and Hillery (1988). 

Let us consider the system of particles with coordinates x, relative to the ith lattice 
cell. The energy of one electron interacting with the lattice is taken to be of the form 

where tz, = J , ,  d’r 1 1 ~ 1 ~  is the electron charge inside the ith cell (we suppose a two- 
dimensional character for the electron system). To simplify the study we consider the 
continuum variant of the Hamiltonian (1) and restrict ourselves to the stationary case: 

H ( ’ )  = [ah’@‘ + +azcp2 + :a4qcl + aqn + (h2/2m)(Vt/J)*] d 2 r  ( 2 )  

where a? = C 2 / S ,  a4  = ci4/S, S is the area of the cell section ( S  = ab) and y ( r )  shows the 
lattice deformation. 

The ground state of the system is determined by the minimum condition of the energy 
( 2 )  relative to the variation of ~ ( r )  and y ( r )  restricted to the normalisation condition 

I 

One finds the deformation y ( r )  in the ground state: 

u’y + a,q”  = ~ I I J ~ ’ .  
We compare here two cases: a2  = 0 and a4 = 0. In these cases we get the following 
functionals which should be minimised by the variation of y :  

H[i\ = [(h2/2m)(Vy)* - 3(o2/a2)y4] d2x.  ( 5 )  

Let us take any normalised function y l ( x )  and consider the set qA: q7.(x) = Avl(Ax). 
The functionals (4) and ( 5 )  take the following forms: 

H[:)(A)  = (h2/2m)A2A 1 - $ o ” ~ u ~ ~ ’ ~ A ~ ’ ~  B 1 (6) 

and 

H$\(A) = (h2/2m)A2Al - 3o2a;’A2B2 (7) 

(The coefficients A I, B 1 ,  B2 depend on the function v,. )  One may conclude that, in the 
case a2 = 0, a value of A exists for which is minimum--A. = 
o~ ,~ :~( (mB, /2 f i*A  l)3/4-and the minimum value of H# is negative: H[:{(min) = 
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- 102a41/2B1(mB1/2h2A,)”2. In the case a4 = 0 (equation ( 7 ) )  one gets either E. = 0 
(i.e., an unlocalised state) or A = cc (i.e., a state localised on one site). We should 
mention here that in the one-dimensional case polaron states of intermediate radius 
exist even for the harmonic lattice (Davydov 1984, Heeger eta1 1988). The dependence 
of the type of polarons on the space dimensionality was considered in detail by Emin 
and Holstein (1976) and Emin and Hillery (1988). 

Let us now consider two electrons in the singlet state. For this state we may take the 
wavefunction I) as a product of one-electron functions: 

Y ( X l ? X ? )  = A 2 I ) l ( W V 1 ( A ~ 2 ) .  (8) 

In this case the energy function HI:!,) takes the following form: 

(9) H[\\)(A) = 2[(h’/2m)A2,4 - ~a4//”a;l.”2/’2’I’Bl]. 

Minimising HI:\’ with respect to variation of A ,  one finds that 

H{:f)(min) = 2”*H);\(min). (10) 

A E  = H[:\) - 2Hj:\ = 2(2’” - 1)H# 0,8H[:{(min). 

Thus the bipolaronic state is favourable, and the energy gain is given by the expression 

(11) 

We take the two simplest forms for VI : y l l a  = ( ~ / J T ) ’ / ~  exp(-r) and q l b  = (2 /n ) ]”  
exp( - r 2 ) .  The values H[&, and H [ &  are 

2 - - h2 m)-l/2 2 -1/221/216-1/2(&)3/2 fq]. = - ( f i 2 / m > L  - ( / 0 a4 
(12) 

fi[i]b = - 2(n’/m>~ 2 = -2(fi2/m) - ‘ I2  oza;1/2 (2/n)1/* (6) 312,  

Thus the function Vlb is preferable (Hb  < H J .  
It is of interest to express H [ &  in terms of the mean interelectron distance 

I ,’? 

E h  = [ 1 d 2 r 1  d 2 r 2 ( r i  - r2)’?$:(r1)?$:(r2)]  = A;’. 

If we suppose that E is equal to the correlation length, we take its value as 1 6 A  
(YBa2Cu307, Abrikosov and Falkovsky 1988) and obtain 

H [ &  = -660(m,/m) ( k ) .  

If we take for the effective electron mass the value m = 6m,  (Gor’kov and Kopnin 1988), 
we get A E  - kT,. One also may obtain an equation which restricts the possible values 
of the parameters of the model, o and u4:  

E = (6m,/m)3’40-’ ai’4(fi2/me)3f4. (14) 

What happens if a2  is not equal to zero? The answer may be obtained only from a 
computer study and is as follows. For small a ,  (positive and negative) the picture is as 
described above. With the absolute value of a2 increasing, the polaron state disappears 
first while the bipolaron state still exists (more comprehensive results will be published 
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elsewhere). To illustrate these statements we consider here only the case of small positive 
a2: 

6H[;\ = a2 j d 2 r q 2 ( r )  = a2A-2'3 j d 2 r ~ y ' 3 ( r )  

G H [ i f )  = ~~2213A-213 d ' y q j / 3 ( y ) .  i 
One sees that dH[:\ and dH[:\) are both positive, but that GH[:f) - 26H[;\ is negative 
and with a 2  increasing the bipolaron state becomes more stable relative to decay into 
two polarons. 

Considering a polaron and bipolaron moving uniformly, one may determine their 
effective masses. The corresponding contribution in the energy is equal to 

6, ,H = &U' [ m  + (%I2 d'r] 

If the velocity U is small enough, we may use the value of A obtained above and obtain 

6 , H = 2 u 2  

The effective mass of the polaron 

M a 2  m 
S a4  8h2 

M =m+---- eff 

will be small enough ( M  - 5m) if .'/a4 - 6 x (here we use atomic units: h = me = 
e = 1 and take M = 32000 ae, S = 64 ae). Equation (14) gives 6 - 30 - a - l a y 4 .  There- 
fore one finds that a4  - 4 x au, CJ - 5 x au. These values of the parameters 
are reasonable enough, but we should stress that our estimate is rather approximate. 

There are some other questions which we will consider only qualitatively here. 

(i) The Coulomb repulsion should be taken into account. In its naive form the 
corresponding energy is 

( E ,  is the dielectric constant), and in the formula (6) this gives an extra term &G1AB3. 
Thus, the bipolaronic state exists for any E,, but if E ,  is not large enough this state 
becomes unstable relative to the decay into two polaron states. On the other hand, if we 
suppose that the screening length is rather small, the Coulomb interaction takes a contact 
form: 

Uc = a d 2 r q 4 ( r )  J 
which gives an extra contribution aB4A2 in formula ( 6 ) .  One concludes that in this case 
the bipolaron state also exists and its stability condition is less restrictive than in the case 
(16). 
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(ii) We have considered here only singlet pairing. In the triplet state we cannot use 
the simplest representation (8) and the problem again needs a computer study. We have 
not found a triplet bipolaron state, but there is no exact proof of its absence. 

(iii) We have not considered coupling of deformations in different cells, i.e. there is 
no gradient term in the Hamiltonian (2). This coupling gives an extra term proportional 
to A4/3 in formula (6), which is (for small A )  less than the binding energy proportional to 

Thus, inclusion of this term complicates the picture and does not change the result 
qualitatively. 

We have shown that the lattice anharmonicity may produce a drastic enhancement 
of the electron-lattice interaction. In this case polaron and bipolaron states are formed 
which are lacking in the harmonic lattice case. The Bose condensation of the bipolarons 
may provide a mechanism of superconductivity. 
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